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WAVES IN A BED UNDER PERIODIC TANGENTIAL LOADING

UDC 534.213V. I. Erofeev, N. V. Klyueva, and I. N. Soldatov

The far-zone structure of the wave field in an elastic bed on a rigid foundation is considered. The
wave field is generated by a tangential periodic force applied to the bed surface. The amplitude–
frequency characteristics of surface vibrations for propagating modes are found. The partition of
energy between different modes is considered.
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In applied research, it is often more important to elucidate the wave-field structure rather than to calculate
displacements due to periodic loading; the key issues here are as follows: What are the modes forming the wave
field? Which modes prevail among them? etc. For instance, in vibration-damping problems, one has often to
know which of the modes carries the largest portion of energy under certain assumptions about the source of
vibrations. Acoustic inspection problems can be considered as another example. Vibroacoustic inspection has often
to be performed under conditions with possible simultaneous excitation of several propagating vibrational modes.
In such cases, one has to be sure that the monitored vibrational mode is indeed excited and that the amplitude of
this mode is not low compared to other excited modes. A similar situation is possible in shallow-bed explorative
seismology, where the correspondence between the detected wave packet and the type of the excited wave (surface
or channel one) is hard to establish.

1. Formulation of the Problem. A periodic tangential load is applied to the free surface of an elastic
isotropic bed of height h resting on a rigid foundation without cohesion. We attach a cylindrical coordinate system
Orθz with axis z is directed normally to the surface inward the bed to the interface between the bed and the
undeformed foundation. We reckon the angle θ from the direction of the applied tangential load. The equations of
motion for an isotropic elastic continuum are [1, 2]

−∂2u

∂t2
+ (c2

p − c2
s) grad div u + c2

s∆u = 0,

where u = (ur, uθ, uz)t is the displacement vector, cp =
√

(λ + 2µ)/ρ and cs =
√

µ/ρ are the velocities of the
pressure and shear waves, λ and µ are the Lamé moduli of elasticity, and ρ is the density.

The bed surfaces (z = 0 and z = h) outside the action of the periodic load should obey the conditions of the
absence of stresses on the free surface and continuity of normal displacements on the bed-foundation interface

σzz|z=h = 0, σzr|z=h = −Π(r, θ) cos θ e−iωt, σzr|z=0 = 0,

σzθ|z=h = Π(r, θ) sin θ e−iωt, σzθ|z=0 = 0, uz|z=0 = 0,

where σzz, σzr, and σzθ are the stress-tensor components:
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(∂ur

∂r
+

ur

r
+
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,

σzr = µ
(∂ur

∂z
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∂uz

∂r

)
, σzθ = µ

(∂uθ

∂z
+
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r

∂uz

∂θ

)
;

Π(r, θ) is a function that describes the shear-stress distribution.
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2. Wave Field in the Far Zone. We consider the wave field generated by a point tangential load
Π(r) = Pδ(r)/r, where δ(x) is the delta-function and P = const. To derive the expressions for the field of
displacements, we use the method described in detail in [1–5]. This method consists in applying the integral
Fourier–Bessel transform over the spatial variables r and θ to the equations of motion and boundary conditions
with subsequent solution of the resultant algebraic problem. This yields expressions for displacements in the form
of certain double integrals. To calculate the integrals, we use the contour-integration methods in the complex plane.
Below, all expressions are written in the dimensionless variables

z′ =
z

h
, r′ =

r

h
, t′ =

tcs

h
, P ′ =

P

µ
, Ω =

ωh

cs

(in what follows, the primes are omitted). Sufficiently far from the source, the dominating contribution to the wave
field is made by propagating modes (i.e., by modes with real wavenumbers); this allows us to use the formula for
residues at first-order poles (second-order poles appear only at certain values of Poisson’s ratio ν) and write

uz(r, θ) = iP e−iΩt cos θ

N(Ω)∑
n=0

k2
nΛn(Ω)gzn(Ω, z)H(1)

1 (knr),

ur = iP e−iΩt cos θ

N(Ω)∑
n=0

knΛn(Ω)grn(Ω, θ, z)H(1)
0 (knr), (1)

uθ = iP e−iΩt sin θ

N(Ω)∑
n=0

knΛn(Ω)gθn(Ω, θ, z)H(1)
0 (knr).

Here N(Ω) is the total number of propagating modes excited at a given frequency Ω, H
(1)
j (knr) (j = 0, 1) are the

Hankel functions of the jth order,

gzn(Ω, z) = 2η cosh ζ sinh ηz + (Ω2 − 2k2
n) cosh η sinh ζz/ζ,

grn(Ω, θ, z) = 2k2
n cosh ζ cosh ηz − (2k2

n − Ω2) cosh η cosh ζz + 4k2
nΩ−2ζ sinh−1 ζgzn(Ω, 1) sin2 θ cosh ζz,

gθn(Ω, θ, z) = [(2k2 − Ω2) cosh η + k2Ω−2ζ sinh−1 ζgzn(Ω, 1) cos 2θ] cosh ζz,

Λn = ζ/(2S′(kn,Ω)), η =
√

k2
n − Ω2c2

sc
−2
p , ζ =

√
k2

n − Ω2 ,

S′(k,Ω) = 8(2k2 − Ω2)k sinh ζ cosh η + (2k2 − Ω2)2k
[cosh ζ

ζ
cosh η +

sinh η

η
sinh ζ

]
− cosh ζ sinh η(8kζη + 4k3η/ζ + 4k3ζ/η)− 4k3(η sinh ζ sinh η + ζ cosh ζ cosh η),

and kn is the (real) dimensionless wavenumber of the nth mode, which satisfies the dispersion equation for symmetric
normal Lamb waves in an elastic bed S(kn,Ω) = 0, where S = (2k2 − Ω2)2 sinh ζ cosh η − 4k2ζη cosh ζ sinh η.

3. Normal Displacements of the Bed Surface. Figure 1 shows the dependences An(Ω)
= k2

nΛn(Ω)gzn(Ω, 1) with ν = 0.3 for the first five modes (n = 0, . . . , 4). In the case of a concentrated tan-
gential load, the vertical displacements are primarily produced by the lowest propagating mode. The amplitude
of surface vibrations excited by propagation of any other mode is smaller than one third of the amplitude of the
lowest mode. Nevertheless, with allowance for the finiteness of the area to which the tangential load applied, the
contribution of the lowest mode to the surface displacements at all frequencies is no longer dominating. In the case
of a periodic tangential load Π(r) = PH(a− r)/(πa2) [H(r) is the Heaviside function] uniformly distributed over a
circular region of radius a/h, the functions An(Ω) should be multiplied by the factor 2hJ1(ka/h)/(ka). Thus, the
expression for the normal displacements of the bed surface is

uz(r, θ) = iP e−iΩt cos θ

N(Ω)∑
n=0

Aa
n(Ω)H(1)

1 (knr),
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where Aa
n(Ω) = 2ha−1knΛn(Ω)gzn(Ω, 1)J1(knah−1). The dependences Aa

n(Ω) (n = 0, . . . , 4) for a/h = 0.5 and
ν = 0.3 are plotted in Fig. 2. It is seen that there exist frequencies at which the vertical displacements of the bed
surface are conditioned by the highest modes only.

It is expedient to compare the dependences of the normal displacements on the tangential and vertical point
loads. The expression for the normal displacements due to the concentrated vertical periodic force is well known
(see [5]):

uz(r) = iP e−iΩt

N(Ω)∑
n=0

AN
n H

(1)
0 (knr).

Here AN
n (Ω) = πΩ2knη sinh η sinh ζ/S′(kn,Ω). Figure 3 shows the dependences AN

n (Ω) for the first three modes
(n = 0, 1, 2; ν = 0.3). In contrast to the case of a vertical load, the amplitudes of normal displacements caused
by tangential loading depend on the angle θ, have lower values, and display a more intricate dependence on the
frequency Ω.
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Using asymptotic expansions for the Hankel functions, which are valid in the far zone for all frequencies
except for values of Ω close to the barrier frequencies Ωlj = πl(cp/cs)j − (πcp/(2cs)+1)j +1 (l = 1, 2, . . . , j = 0, 1),
one can bring the first expression in (1) to the form

uz(r, θ) ≈
√

2P cos θ√
πr

N(Ω)∑
n=0

k−1/2
n An(Ω) exp

[
− i

(
Ωt− knr +

π

4

)]
.

4. Energy Transferred by Symmetric Modes. The partition of energy between the waves of different
types in an elastic half-space was considered in [6–12]. For a number of vibration-damping problems and vibration-
based inspection problems, it is of interest to consider the partition of energy between the symmetric normal modes
in an elastic bed. In contrast to the lowest mode, whose energy with increasing frequency is rapidly localized near
the surface, modes with higher numbers display no localization of energy. Figure 4 shows the structure of vertical
displacements over the bed height for the lowest mode at the frequencies Ω = 0.5, 5, 10, and 50. The distributions
of z-displacements for modes with numbers n > 1 are oscillating functions with the total number of oscillations
increasing with the mode number n. Figure 5 shows the variation of the amplitude of vertical displacements across
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the bed for the mode with n = 6. At certain frequencies, the amplitude of particle displacements inside the bed
becomes higher than at the free surface.

The energy flux across the surface F can be calculated as∫ ∫
F

(∂u

∂t
,σn

)
dS,

where σn = σijni is the stress vector on the elemental region of F with the normal n = (n1, n2, n3). We represent
the displacements u and the stress vector σn as

u′ = û e−iΩt, σ′
n = σ̂n e−iΩt,

where û and σ̂n are the complex amplitudes (the complex-conjugated terms are omitted). For the dimensionless
energy flux E′ = E/(ρc3

sh
2) across the surface F , averaged over the vibration period 2π/Ω, we have

E′ = −Ω
2

Im
∫ ∫
F

(û, σ̂∗
n) dS,

where the asterisk indicates complex conjugation.
We consider the energy transferred by the waves across a cylindrical surface of a large radius R. The height

of the cylinder is equal to the height of the bed. In view of additivity of the averaged energy flux in the bed [13],
the flux E can be represented as the sum of the energies transferred by individual modes:

E = −Ω
2

Im
N(Ω)∑
m=0

1∫
0

dz

2π∫
0

dθ(ûrσ̂
∗
rr + ûθσ̂

∗
rθ + ûzσ̂

∗
rz)

(the subscript m denoting the mode number is omitted at the displacements and stresses). From expressions (1),
one can derive expressions for ûr, ûθ, and ûz:

ûz = iPUzH
(1)
1 (kmr), Uz = cos θk2

mΛm(Ω)gzm(Ω, z),

ûr = iPUrH
(1)
0 (kmr), Ur = cos θkmΛm(Ω)grm(Ω, θ, z), (2)

ûθ = iPUθH
(1)
0 (kmr), Uθ = sin θkmΛm(Ω)gθm(Ω, θ, z).

Substituting (2) into the expressions relating the stresses with the displacements and taking into account that Uz,
Ur, and Uθ are real-valued functions for propagating modes and that the relations
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∂

∂r
H

(j)
0 (kmr) = −kmH

(j)
1 (kmr),

∂

∂r
H

(j)
1 (kmr) ≈ kmH

(j)
0 (kmr) (j = 1, 2),

H
(1)
j (kmr)H(2)

l (kmr) ≈ 2(i)l−j

πkmr
(j, l = 0, 1)

are valid in the far zone, we obtain the expression for the energy transferred by the mth mode:

Em =
ΩP 2

π

1∫
0

dz

2π∫
0

dθ
(2− 2ν

1− 2ν
U2

r + U2
θ + U2

z −
2ν

1− 2ν

1
km

Ur
∂Uz

∂z
+

1
km

Uz
∂Ur

∂z

)
.

The partition of energy between different generated modes is shown in Figs. 6 and 7. The curves in Figs. 6
and 7 refer to a concentrated source and to a source uniformly distributed over the region a/h = 0.5 (Poisson’s
ratio is ν = 0.3).
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